リモートセンシングの防災分野への応用 Application of Remote Sensing to Disaster Management

July 5, 2018

山崎 文雄 Fumio Yamazaki 千葉大学 Chiba University, Japan http://ares.tu.chiba-u.jp/

Contents

Remote Sensing and Disaster Management

- Satellite Optical and Thermal Sensors
- Satellite SAR
- Airborne SAR
- Lidar and UAV

Objectives of Remote Sensing in Disaster Management

Pre-event exposure and topography mapping: land-cover classification, building and road detection, DSM/DEM, surface temperature

Post-event damage assessment:

change detection due to natural and man-made disasters

•Pre-event use is basically the same as other application fields.
•Combined use of texture (optical/SAR) and GIS & DEM is important for pre- and post-event damage assessment.

Platforms of Remote Sensing

Satellite: near-polar orbit, geo-stationary, Space Shuttle/Station
 Airborne platform: airplane, helicopter, drone
 Ground-based: balloon, tall building, crane, ladder, car

Acquisition condition of various sensors and platforms in disaster response

Platform /Sensor	Satellite © Large coverage	Airborne O Mod. coverage	Ground Based △ Low coverage
Optical Sensor	Δ Day, Fixed time Δ No cloud	ODay, Any time O No low cloud	© Day, Any time
LiDAR	Δ	O All day, Any timeO No low cloudØ High accuracy	© Day, Any time
Thermal Infrared	$\begin{array}{l} O \\ All \\ day, \\ Fixed \\ time \\ \Delta \\ No \\ cloud \\ \Delta \\ Low \\ resolution \end{array}$	 All day, Any time No low cloud Mod. resolution 	ØAll day, Any timeØ High resolution
SAR	O All day, Fixed time O All weather	 ◎ All day, Any time ◎ All weather △ R & D stage 	Δ Ground penetration Radar

Contents

Remote Sensing and Disaster Management

Satellite Optical and Thermal Sensors

Satellite SAR

- Airborne SAR
- Lidar and UAV

Landsat-5 TM Images of Kobe area in 1994-95

Aug. 17, 1994 (Before EQ)

Jan. 24, 1995 (After EQ)

1998 RIKEN EDM Disaster Information Systems Team

Damage Distribution Estimated from Landsat-5 Images

松岡昌志,山崎文雄,翠川三郎,土木学会論文集,No. 648/I-54, pp. 177-185, 2001

Use of GPS and RS Data for Field Survey Joint Survey by MCEER/EDM after the 1999 Kocaeli, Turkey EQ

Landsat image as a base map

Spatial Resolution: ASTER and QuickBird Images of Bam, Iran

Change Detection: QB images of Bam, Iran

Pre-event 2003.9.30 \longrightarrow Post-event 2004.1.3

Damage classification of masonry buildings (EMS, 1998) and typical pre- and post event QB images

Classification of damage to masonry buildings					
	Grade 1: Negligible to slight damage (no structural damage, slight non- structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.				
	Grade 2: Moderate damage (slight structural damage, moderate non- structural damage) Cracks in many walls. Fall of fairly large pieces of plaster. Partial collapse of chimneys.				
	Grade 3: Substantial to heavy damage (moderate structural damage, heavy non- structural damage) Large and extensive cracks in most walls. Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-structural elements (partitions, gable walls).				
	Grade 4: Very heavy damage (heavy structural damage, very heavy non- structural damage) Serious failure of walls; partial structural failure of roofs and floors.				
	Grade 5: Destruction (very heavy structural damage) Total or near total collapse.				

EMS: European Macroseismic Scale

Post- event

Grade 3

Grade 4

Grade 5

Result of visual damage detection of QB images for Bam City

Yamazaki, Yano and Matsuoka (2005) Earthquake Spectra

Shadow Correction of Optical Image 光学画像における影補正

W. Liu, F. Yamazaki, Object-Based Shadow Extraction and Correction of High-Resolution Optical Satellite Images, IEEE JSTARS, pp. 1-7, 2012.

Original and corrected shadow-free QB images

Satellites that observed the M9.0 2011 Tohoku earthquake

Optical, Medium Resolution

ALOS AVNIR-2 (10m)
Terra ASTER (15m)
Landsat 7 (30m)

SAR

ALOS PALSAR (L-band, 6.25m)
Radarsat 1, 2 (C-band, 8m)
TerraSAR-X (X-band, 3m)
COSMO-SkyMed (X-band, 3m)

Optical, High Resolution

- •FORMOSAT-2 (2.0m) •THEOS (2.0m)
- •RapidEye (2.5m)
- •WorldView-1,2 (0.5m) •QuickBird (0.6m)
- •Ikonos (1.0m)
- •GeoEye-1 (0.5m)

WoldView2 & QuickBird

by Digital Globe Aerial survey has been banned over Fukushima Daiichi NPP

18

March 14, 2011 11:04 am, three minutes after #3 reactor caused hydrogen explosion

http://www.digitalglobe.com/index.php/27/S

ASTER TIR Images of Soma in the 2011 Tohoku EQ tsunami 東日本大震災前後のASTER夜間熱赤外画像 福島県相馬市

花田大輝, 山崎文雄, 日本地震工学会論文集, Vol. 12, No. 6, 2012.

Tsunami flooded area estimation by ASTER TIR images

Areas more than 5° C increase excluding 9 m above sea

Pre-event

false color

地震後画像 Post-event false color²⁰

Contents

Remote Sensing and Disaster Management

■ Satellite Optical and Thermal Sensors

Satellite SAR

Airborne SAR

■ Lidar and UAV

Flow of post-event damage assessment

Characteristics of SAR

- All Weather, Daytime and Nighttime
- Combined use with GIS and Optical images
- Include height and lateral information due to side-looking mode

Change Detection from SAR intensity images

- 1.Image matching
- 2. Speckle noise filtering (Lee Filter)
- 3. Calculating following indices:
 - ✓ **Difference** of backscattering coefficients (after before)

$$d[dB] = \bar{I}a_i - \bar{I}b_i$$

✓ **Correlation** coefficient

 Ia_i and Ib_i are the digital numbers of the post- and pre-images. Ia_i and Ib_i are the corresponding averaged digital numbers over the pixel window. 23

TerraSAR-X intensity data of Sendai area for the 2011 Tohoku EQ
R: 2011/03/13
G&B: 2010/10/21Pre-eventPost-eventR: 2011/03/13
G&B: 2010/10/21

UTC: 2010/10/20, 20:43 Japan ST: 2010/10/21, 5:43 Incidence angle: 37.32° UTC: 2011/03/12, 20:43 Japan ST: 2011/03/13, 5:43 Incidence angle: 37.30°

StripMap mode, HH polarization

Reduced backscatter
Flooded areas etc.
Increased backscatter
Debris etc.

Movement of an intact building in SAR images **Pre-event**

Post-event

Color composite

101 x 101 pixels X I: Post-event SAR 115 x 115 pixels G&B: 2010.10.21 R: 2011.03.13

T: Pre-event SAR

Area-based correlation

Correlation Matrix

(1.25 m/pixel)

26

Estimation of crustal movements at GPS Yamoto

W. Liu, F. Yamazaki, Detection of Crustal Movement from TerraSAR-X intensity images for the 2011 Tohoku, Japan Earthquake, *Geoscience and Remote Sensing Letters*, IEEE, 10(1), 2013.

Comparison with GPS observed data

- GPS observed data Detected results

W. Liu, F. Yamazaki, IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 1, 2013.

Fukushima Daiichi nuclear power plant in September 2011 福島第一原子力発電所の事故後の状況

TerraSAR-X images of Fukushima Daiichi NPP after EQ

W. Liu, F. Yamazaki, T. Sasagawa, Journal of Disaster Research, Vol. 11, No. 2, 2016.

TerraSAR-X images of floating-roof-type oil tanks in Japan

Acquisition : 2010/06/21, 2010/09/06, 2010/11/22

Height : 5 m

a. Jogawa Bridge (L=126.0m)

Change Detection for Enlarged Bridge Footprint

Relationship between the difference d and correlation coefficient r (a) and the cumulative probability of r when the threshold was set as r=0.47 (b) for the 58 bridges

井上和樹, リュウ・ウェン, 山崎文雄, 日本地震工学会論文集, Vol. 17, No. 5, 2017.

Change of the producer accuracies as a function of threshold of r

Threshold Value of Correlation Coefficient

Error Matrix for the threshold r =0.47

		Reference Data			
		Collapsed	Survived	Total	User's
		-			Accuracy
SAR Image Interpretation	Collapsed	8	12	20	0.400
	Survived	1	37	38	0.974
	Total	9	49	58	
	Producer's	0.889	0.755		
	Accuracy				
	Overall Accuracy				0.776
	Kappa Coefficient				0.430

井上和樹, リュウ・ウェン, 山崎文雄, 日本地震工学会論文集, Vol. 17, No. 5, 2017.

Contents

Remote Sensing and Disaster Management

■ Satellite Optical and Thermal Sensors

■ Satellite SAR

Airborne SAR

■ Lidar and UAV

Multi-polarized **Pi-SAR-L2** image for the study area Natori and Iwanuma cities, Miyagi prefecture, Japan. **JAXA**

R: HH, **G**: HV, **B**: VV

	Pi-SAR-L2		
Date	2014/6/12		
Band	L-band		
Azimuth resolution	1.76 m		
Range resolution	3.2 m		
Pixel size	2.5 m/pixel		
Polarization	HH / HV / VH / VV		

Texture measures for the HH-polarized Pi-SAR-L2 image Gray-Level Co-occurrence Matrix (GLCM)

Eight textural features in angle 0° Distance 1 Window size of 9 x 9 using ENVI software

Original Image

Object-based supervised land-cover classification result

Conscience Parts Conscience Parts

- Water and roads are difficult to classify.
- False positive errors for solar panels.
- The results are similar for 5 PCs and 8 PCs textures.
- \rightarrow 95 % cumul. Eigenvalue is enough.

Original HH and HV + **5 PC textures** (95.5 %)

F. Yamazaki, N. Samuta, W. Liu, PIERS, 2017.

Pi-SAR2 (X2) flight after the 2016 Kumamoto EQ by NICT

R:HH,G:HV,B:VV

4-component scattering power decomposition (G4U) Minami-Aso village Singh et al. (2013)

R: σ_{d} **G**: σ_{v} **B**: σ_{s}

 $\begin{bmatrix} V \text{ pol.} \\ H \text{ pol.} \\ V \text{ pol.} \end{bmatrix} = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix}$ $\begin{bmatrix} Surface \text{ scattering (Ps)} \\ Double-bounce \text{ scat. (Pd)} \\ Volume \text{ scattering (Pv)} \\ Helix \text{ scattering (Pc)} \end{bmatrix}$

Comparison of aerial photo and Pi-SAR2 color composite for low-damage areas

(a) Low collapsed ratio area with RC buildings

(b) Low collapsed ratio area with wooden houses F. Yamazaki, W. Liu, S. Kojima, US-NCEE, 2018.

Comparison of aerial photo and Pi-SAR2 color composite (center) for high-damage areas

(c) high collapsed ratio area ($R_c \ge 40 \%$)

(d) high collapsed ratio area ($R_c \ge 60 \%$)

Airborne Pi-SAR-X2 images for bridges in central Tokyo

Effect of illumination angle $\boldsymbol{\phi}$ to the bridge axis

In addition to the structural types, the backscattering characteristics of bridges also change according to the illumination angle

R:Pd

G:Pv

B:Ps

 $\varphi=12^{\circ}$ (22 December, 2009)

 $\phi = 76^{\circ}$ (10 January, 2013)

Pi-SAR-X2 images of Girder bridge and Upper-arch bridge

Pi-SAR-X2 data used in this study

H. Hirano, F. Yamazaki, W. Liu, ISRS, 2018.

Contents

Remote Sensing and Disaster Management

- Satellite Optical and Thermal Sensors
- Satellite SAR
- Airborne SAR

■ Lidar and UAV

Epicenters, faults, and GPS stations in the 2016 Kumamoto EQ

Estimation of 3D coseismic displacement from LiDAR DSMs in the main-shock of the Kumamoto EQ

Maximum cross-correlation to determine crustal movements from LiDAR DSMs By 100 m grid cells

Moya, L., Yamazaki, F., Liu, W., and Chiba, T.: Calculation of coseismic displacement from lidar data in the 2016 Kumamoto, Japan, earthquake, Nat. Hazards Earth Syst. Sci. 17, 143-156, 2017 54

Extraction of **collapsed buildings** and **landslide** by the difference of **LiDAR** Digital Surface Models (DSMs)

F. Yamazaki, W. Liu, Remote sensing technologies for post-earthquake damage assessment: A case study on the 2016 Kumamoto earthquake, 6th Asia Conference on Earthquake Engineering, 2016. 55

Extraction of collapsed buildings using two DSMs' height difference after removing crustal movements

Difference of the two DSMs

L. Moya, F. Yamazaki, W. Liu, M. Yamada, Detection of collapsed buildings from lidar data due to the 2016 Kumamoto earthquake in Japan, NHESS, 2018.

Location (a) and color-composite (b) of ALOS-2 PALSAR-2 images

Coherence between the two PALSAR-2 images (2016/4/15 vs 2016/4/29) for the urban land-cover in the central Mashiki Town

Extraction of changrd areas by coherence and height-difference

Areas extracted by **low coherence** ($\gamma < 0.2$)

Areas extracted by DSM difference: |dH| > 0.5 m

Coherence and the extracted area by the coherence threshold

Height difference and the area exceeding \pm the thresholds

the extracted area = about 9 %

the extracted area = about 8.5 %

F. Yamazaki, L. Moya, W. Liu, Use of multi-temporal Lidar data to extract changes due to the 2016 Kumamoto earthquake, Proc. of SPIE, 2017

Drone (UAV) flight in Onagawa on Nov. 14, 2014

Building B

Phantom2 vision+ 2014.11.14

H= 30 m

Structure from Motion (SfM) and Developed 3D Model

- Construction of 3D model of structures from many images with unknown positions.
- Combination of
- •Computer Vision -- 3D modeling
- •Robot Vision -- camera position

Agisoft PhotoScan

F. Yamazaki, T. Matsuda, S. Denda, W. LiuConstruction of 3D models of buildings damaged by earthquakes using UAV aerial images,, 9th Pacific Conference on Earthquake Engineering, Sydney, 2015.

Summary

- Application of remote sensing technologies to disaster response was discussed based on real earthquake events.
- Optical satellite images were used to observe floods, landslides, and damages to built environment. The improvement of resolution enabled us to monitor small-scale damages.
- **Thermal** satellite sensor could extract **flooded areas** as well as bush fires and volcanic activities.
- Satellite SAR sensors were used to extract various damage situation, even at night and under cloud-cover conditions.
- Airborne SAR can be used for detailed land-cover and damage mapping.
- Aerial surveys by airplanes and drones were carried out to observe detailed damage situations. LiDAR is also promising to observe the ground-surface situations.

Acknowledgements

JAXA, NICT, PASCO, Asia Air Survey Co., Ltd., GSI, JSPS_KAKENHI, JST_J-Rapid