This task performs a Spectral Angle Mapper (SAM) supervised classification. SAM is a physically based spectral classification that uses an n-D angle to match pixels to reference spectra. This task requires an input vector or ROI layer from which mean spectra are computed for all of the records.
Use the TrainingClassificationStatistics task to compute the mean spectra from vector layers.
Example
This example uses the TrainingClassificationStatistics task to compute the mean spectra of each record from a polygon shapefile. It passes the mean spectra to the SAM classification task, which creates a classification image from a QuickBird scene.
e = ENVI()
File1 = Filepath('qb_boulder_msi', Subdir=['data'], $
Root_Dir=e.Root_Dir)
Raster = e.OpenRaster(File1)
File2 = Filepath('qb_boulder_msi_vectors.shp', Subdir=['data'], $
Root_Dir=e.Root_Dir)
Vector = e.OpenVector(File2)
StatTask = ENVITask('TrainingClassificationStatistics')
StatTask.INPUT_RASTER = Raster
StatTask.INPUT_VECTOR = Vector
StatTask.Execute
Task = ENVITask('SpectralAngleMapperClassification')
Task.INPUT_RASTER = Raster
Task.MEAN = StatTask.MEAN
Task.Execute
DataColl = e.Data
DataColl.Add, Task.OUTPUT_RASTER
View = e.GetView()
Layer = View.CreateLayer(Task.OUTPUT_RASTER)
See More Examples for a code example that uses mean spectra from ROIs as input to SAM classification.
Syntax
Result = ENVITask('SpectralAngleMapperClassification')
Input parameters (Set, Get): CLASS_COLORS, CLASS_NAMES, INPUT_RASTER, MEAN, OUTPUT_RASTER_URI, OUTPUT_RULE_RASTER_URI, THRESHOLD_ANGLE
Output parameters (Get only): OUTPUT_RASTER, OUTPUT_RULE_RASTER
Parameters marked as "Set" are those that you can set to specific values. You can also retrieve their current values any time. Parameters marked as "Get" are those whose values you can retrieve but not set.
Input Parameters
CLASS_COLORS (optional)
This is an array of RGB triplets representing the class colors as defined by the input vector.
CLASS_NAMES (optional)
This is a string array of class names as defined by the input vector.
INPUT_RASTER (required)
Specify a raster on which to perform supervised classification.
MEAN (required)
Specify an array of size [number of bands, number of classes], representing the mean spectra from the input training regions. You can use the TrainingClassificationStatistics task to compute the mean spectra.
OUTPUT_RASTER_URI (optional)
Specify a string with the fully qualified filename and path to export the associated OUTPUT_RASTER.
- If you do not specify this parameter, the OUTPUT_RASTER will not be created.
- If you set this parameter to an asterisk symbol (*), the OUTPUT_RASTER will be virtual and not written to disk.
- To force the creation of a temporary file, set this parameter to an exclamation symbol (!).
- If you set it to the hash symbol (#), ENVI creates a file in the temporary directory, but this file will not be deleted when ENVI closes.
OUTPUT_RULE_RASTER_URI (optional)
Specify a string with the fully qualified filename and path of the associated OUTPUT_RULE_RASTER.
- If you do not specify this parameter, the OUTPUT_RULE_RASTER will not be created.
- To force the creation of a temporary file set the parameter to an exclamation symbol (!).
- If you set it to the hash symbol (#), ENVI creates a file in the temporary directory, but this file will not be deleted when ENVI closes.
THRESHOLD_ANGLE (required)
Specify an array of values in radians between 0 and 1.5708 (π/2). The default value is 1.5708. You can specify a one-element array to use the same threshold value for all classes. Or, specify an n-element array (where n equals the number of classes), with separate threshold values for each class.
Output Parameters
OUTPUT_RASTER
This is a reference to the output raster of filetype ENVI.
OUTPUT_RULE_RASTER
This is a reference to the output rule image of filetype ENVI.
This output will not be generated unless its associated URI input parameter is set.
Methods
Execute
Parameter
ParameterNames
Properties
DESCRIPTION
DISPLAY_NAME
NAME
REVISION
TAGS
More Examples
The following example uses mean spectra from individual ROIs as input to SAM classification. The ROIs represent locations of known mineral types. The input image is an AVIRIS hyperspectral scene of Cuprite, Nevada, USA. The source files are available from our ENVI Tutorials web page. Click the Hyperspectral link to download the .zip file to your machine, then unzip the files. You will be using the files the files CupriteAVIRISSubset.dat and CupriteMineralROIs.xml.
- Copy the following code into a new window of the IDL Editor and save it to a file named CupriteSAMExample.pro.
- Change the input data paths to the location of the files on your system.
- Compile and run the program.
PRO CupriteSAMExample
COMPILE_OPT IDL2
e = ENVI()
File = 'CupriteAVIRISSubset.dat'
CupriteRaster = e.OpenRaster(File)
ROIFile = 'CupriteMineralROIs.xml'
rois = e.OpenROI(ROIFile)
MeanArray = !NULL
For i=0, N_ELEMENTS(rois)-1 DO BEGIN
ROITask = ENVITask('ROIMaskRaster')
ROITask.DATA_IGNORE_VALUE = 0
ROITask.INPUT_MASK_ROI = rois[i]
ROITask.INPUT_RASTER = CupriteRaster
ROITask.Execute
RSTask = ENVITask('RasterStatistics')
RSTask.INPUT_RASTER = ROITask.OUTPUT_RASTER
RSTask.Execute
MeanArray = [[MeanArray], [RSTask.MEAN]]
EndFOR
Task = ENVITask('SpectralAngleMapperClassification')
Task.INPUT_RASTER = CupriteRaster
Task.MEAN = MeanArray
Task.OUTPUT_RASTER_URI = e.GetTemporaryFilename()
Task.Execute
DataColl = e.Data
DataColl.Add, Task.OUTPUT_RASTER
View = e.GetView()
Layer = View.CreateLayer(CupriteRaster)
roiLayers = !NULL
FOREACH roi, rois DO $
roiLayers = [roiLayers, Layer.AddRoi(roi)]
Layer3 = View.CreateLayer(Task.OUTPUT_RASTER)
END
Version History
See Also
ENVITask, TrainingClassificationStatistics Task, MahalanobisDistanceClassification Task, MaximumLikelihoodClassification Task, MinimumDistanceClassification Task, Masking Support in ENVITasks